		4		3	2	1	1
C	ť	8	t	8		1	IIII
2.).). 2.	1.	a. 5. 2.	a. b. c.	
(An il The l utiliz depre depo	Defin (With	(Expl Two grou	State	Expl Expl Expl (((With Disc A 16 supp of th effic	, 111 3.

important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages

Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019 Electrical Power Utilization

Time: 3 hrs.

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

<u> PART – A</u>

- a. With a neat sketch, explain the working of indirect resistance heating. (06 Marks)
 - b. Discuss methods of temperature control of resistance oven.
 - c. A 16 KW resistance oven employing nicrome wire is to be operated from a 220 V, 1 ϕ power supply. If the temperature of the element is to be limited to 1170° and average temperature of the charge is 500°C. Find the diameter and length of the element wire. Radiating efficiency is 0.57 and emissivity is 0.9 specific resistance of Nicrome is 109×10^{-8} ohm-m. (08 Marks)
- a. Explain the factors affecting the appearance of deposition in electro deposition. (06 Marks)
- b. Explain briefly the various applications of electrolysis.c. Explain the terms used in electrolytic process:
 - (i) Throwing of power.
 - (ii) Current efficiency.
 - (iii) Energy efficiency
 - iv) Electro chemical equivalent
- a. State and explain:
 - (i) Inverse square law.

(ii) Lamberts cosine law, with respect to illumination.	(06 Marks)
Explain the direct lighting and indirect lighting schemes.	(06 Marks)

- b. Explain the direct lighting and indirect lighting schemes. (06 Marks)
 c. Two lamp posts 20 m apart and are fitted with 200 CP lamp each at height of 6 m above the ground. Calculate the illumination on the ground:
 - (i) Under each lamp (ii) Midway between the lamps.
- a. With a neat diagram, explain the construction and working of the sodium vapour lamp. (06 Marks)
 - Define the following terms:
 - (i) MHCP
 - ii) MSCP
 - (iii) Candle power.
- c. An illumination on the working plane of 75 lux is required in a room 72 m×15 m in size. The lamps are hung at 4 m above the work bench. Assume a space height ratio around unity, utilization factor of 0.5. Consider a lamp efficiency of 14 lumens/watt and a candle power depreciation of 20%. Estimate the members rating and with a neat sketch show the deposition of the lamps. (08 Marks)

Max. Marks:100

10EE72

ice

(08 Marks)

(06 Marks)

(06 Marks)

(08 Marks)

(06 Marks)

(06 Marks)

PART - B

- Mention advantages and limitations of electric traction. 5 a.
 - With circuit connections, explain plugging and regenerative braking as applied to tractive b. (08 Marks) motors.
 - A train is required to run between two stations 1.6 km apart at an average speed of 40 kmph. C. The run is to made to a simplified quadrilateral speed time curve. If the maximum speed is to be limited to 64 kmph, acceleration 2 kmphs, coasting and braking retardation to 0.16 kmphps and 3.2 km phps respectively. Determine the duration of acceleration, coasting (06 Marks) and braking periods.
- Define specific energy consumption and mention the factors affecting it. (06 Marks) 6 a. b. Explain the terms:
 - Adhesive weight (i)

Tractive effort. (ii)

- c. An electric train has an average speed of 45 kmph on a level track between stops 1.8 km apart. It is accelerated 2 kmphps and braked at 3 kmphps. Draw the speed time curve for the run. Estimate the energy consumption at axles of the train per tonne-km. Take tractive resistance as 45 N/tonne and allow 10% for rotational inertia. (08 Marks)
- Assuming a quadrilateral speed time curve, derive equation for, 7 a.
 - Total distance travelled by the train between two stops (i)
 - Velocity at the time of braking. (ii)
 - b. Explain :
 - Shunt transition. (i)
 - Bridge transition. (ii)

applied to series parallel starting of D.C. motors with neat figures

- With relevant graphs, explain traction motors characteristics. 8 (06 Marks) a.
 - Discuss the concept and its subsystem of modern electric drives in detail. Draw relevant b. figure. (08 Marks)
 - Write a note on Hybrid vehicles. C.

(06 Marks)

(10 Marks)

(10 Marks)

(06 Marks)